The mathematics curriculum for schools in England and Wales is designed by DCF and endorsed in the National Curriculum. The National Curriculum was set up in the context of the political concern regarding the poor standards of mathematics education, as reflected in government findings for school education, inspection reports, and government publications. However, concern about standards of mathematical attainment in particular, as well as a very long history, led to the very important and urgent need for standards of attainment in mathematics. The National Curriculum was set up in the context of the political concern regarding the poor performance of schools in mathematics, which was identified as an area of significant concern for the government.

Over the years, schools have continued to struggle with the poor performance in mathematics, leading to the introduction of the National Curriculum in 1989, which aimed to improve the teaching and learning of mathematics. The curriculum was designed to ensure that all students would have access to high-quality mathematics education, with a focus on developing a deep understanding of mathematical concepts and the ability to apply them in real-world situations.

In this chapter, we will look at how application has been dealt with in the classroom.

\[2\]
The National Curriculum engages all schools in mathematics, primarily through the work of the government and the National Curriculum Council. The curriculum is designed to ensure that all students have a good understanding of mathematics, and that they are prepared for further education and employment. The first version of the National Curriculum was published in 1986, and was revised in 1990.

The first version of the National Curriculum was introduced in 1986, and was revised in 1990. The curriculum is designed to ensure that all students have a good understanding of mathematics, and that they are prepared for further education and employment.

The revised version of the National Curriculum was published in 1990, and was revised in 1993. The curriculum is designed to ensure that all students have a good understanding of mathematics, and that they are prepared for further education and employment.

The National Curriculum was designed to ensure that all students have a good understanding of mathematics, and that they are prepared for further education and employment. The first version of the National Curriculum was published in 1986, and was revised in 1990. The curriculum is designed to ensure that all students have a good understanding of mathematics, and that they are prepared for further education and employment. The revised version of the National Curriculum was published in 1990, and was revised in 1993. The curriculum is designed to ensure that all students have a good understanding of mathematics, and that they are prepared for further education and employment.
The mathematical work done by the pupils

The curriculum in which ... [the elements are] underpinned by developing a healthy engagement with

school mathematics. Thus, pupils who demonstrate an interest in mathematics are encouraged to

Mathematics achievement. Young children who enjoy the process of understanding and applying mathematics, because they find

Many schools have difficulty with ... [still], which is concerning with

that for teachers. In this year of implementation, most teachers were concerned with

in teaching and applying mathematics.

Teaching, Using and Applying Mathematics

is a key principle in the National Curriculum.

Teaching, Using and Applying Mathematics, showed a

ence of competence and applying mathematics,

inference, and applying mathematics, showed a

ence of competence and applying mathematics,

ence of competence and applying mathematics,
In promoting the development and use of these capabilities, the National Curriculum Council (NCC) encouraged the design of tasks that require appropriate pupil engagement. Tasks must be directed towards the development of processes and skills. For example, pupils might be required to solve problems in a particular way, to develop a working style, such as whether to work independently or in a group.

The communication strand of the NCC's framework was also emphasized. Pupils must engage in discussing and evaluating their strategies and solutions. They must be able to communicate their ideas and findings, using a variety of forms of representation, including oral, written, and graphical methods. The curriculum encouraged pupils to develop a range of modes of communication, to select a choice of mode as appropriate and to apply these modes to their work.
the National Curriculum, "thinking, planning, and applying," the expected outcomes are those that are evident from the curricular content. In this case, the focus is on developing the ability to reason, apply knowledge, and problem solve. The curriculum emphasizes the importance of these skills in mastering mathematical concepts. The text also highlights the need for teachers to encourage students to think critically and creatively, fostering a deeper understanding of mathematical principles. This approach is consistent with the philosophy of the National Curriculum, which aims to prepare students for real-world problem-solving situations.
The National Numeracy Strategy

The National Numeracy Strategy was introduced in 1998 to improve the teaching of mathematics in primary schools in England. The strategy aimed to raise standards in numeracy, and it was implemented across all primary schools. The strategy focused on improving the teaching of mathematics through a more coherent and consistent approach to numeracy education. It was hoped that this would lead to improved performance in mathematics among primary school students.

The strategy emphasized the importance of using rich and varied contexts to engage children in mathematical thinking. It encouraged the use of practical activities, problem-solving, and real-life applications to help children develop a deeper understanding of mathematical concepts. The strategy also placed a strong emphasis on the use of ICT in teaching mathematics, as it was recognized as a powerful tool for enhancing learning.

The strategy was implemented in three phases:

1. **Phase 1 (2000-2001)**: This phase focused on developing and disseminating good practice in numeracy education. It involved training and support for teachers to help them implement the new approach.
2. **Phase 2 (2002-2003)**: This phase saw the introduction of the National Numeracy Test, which was used to assess the progress of pupils in numeracy. The test was designed to provide a clear picture of the standards achieved by pupils and to help identify areas where further support was needed.
3. **Phase 3 (2004-2005)**: This phase focused on consolidation and improvement, with a particular emphasis on supporting schools in their continuing development of effective numeracy teaching.

The National Numeracy Strategy was a significant step forward in improving the teaching and learning of mathematics in primary schools. It provided a framework for schools to develop their own approaches to numeracy education, ensuring that all pupils received a high-quality education in mathematics. The strategy was well-received by many teachers and was recognized for its contribution to improving numeracy standards in England.
Application within the National Numeracy Strategy

The National Numeracy Strategy is based on the latest research into the teaching of mathematics, and aims to improve the numeracy skills of students. The strategy is implemented through the National Numeracy Framework, which sets out the expectations for numeracy education in schools. The framework is designed to ensure that pupils develop a strong foundation in mathematics, and are able to apply their skills in real-world contexts.

The National Numeracy Framework includes a range of objectives, such as developing students' ability to reason mathematically, to solve problems, and to apply their skills in a variety of contexts. The framework is also designed to ensure that students develop a strong conceptual understanding of mathematics, and are able to communicate their thinking effectively.

The National Numeracy Framework is supported by a range of resources, including lesson plans, assessment tools, and professional development materials. These resources are designed to help teachers deliver effective mathematics lessons, and to ensure that students are able to achieve the objectives outlined in the framework.

In addition to the National Numeracy Framework, the National Numeracy Strategy also promotes the use of practical, hands-on activities in the classroom, and encourages teachers to provide students with opportunities to apply their skills in real-world contexts. The strategy also emphasizes the importance of developing students' ability to reason mathematically, and to solve problems, and to apply their skills in a variety of contexts.

The National Numeracy Strategy is an important contribution to the improvement of numeracy education in schools, and is designed to help pupils develop the skills and knowledge they need to succeed in a range of contexts.
The stands of the Framework (DEE 1999: 40)

This statement suggests that there is more to mathematics than numeracy.

Numeracy is... a proficiency in various skills, the National Curriculum and more...
These suggestions are, of course, another matter. Whether these changes will have a impact on the curriculum and beyond, or other, is not clear. The focus here is on the success of the students, not just on the process of teaching and learning. The framework, which is broken down into a number of sections, shows some common characteristics with the previously mentioned common curriculum frameworks. This framework is described in detail on page 60. Some common features between the two curricula are the emphasis on problem solving, which is encouraged throughout the curriculum. However, some differences exist, such as the emphasis on communication, which is not as prominent in this framework. In this chapter, we have looked at the way in which application has been integrated into the curriculum and have identified a number of areas where improvement is needed. The framework that we have used is not the only one, but it is a good example of how to develop mathematical reasoning.
have their ideas about this knowledge?

What knowledge did you expect them to apply? What evidence do you

What's the context? What did you give the children?

Framework a Guidance

unsuccessful in their application. The teachers were given the following

Case studies of successful and unsuccessful application

wanted to develop their practice in mathematics.

Case studies show that successful teachers were considered to be excellent practitioners and were truly com-

—711). All 12

of London. Six of these teachers worked with children at Key Stage 1 (ages 5-7), the others worked with children at Key Stage 2 (ages 7-11). All 12

in this chapter and the following ones we will be looking closely at four

Teachers' ideas about application

3

Whatever theoretical ideas about learning are contained within a

many school teachers could apply the problem of application in many

teachers. We therefore aim to look at the ways in which they do depend crucially on how they are understood and put into practice. By discussing variations in the extent to which they are implemented in the classroom...